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We discuss a method that allows us to compute the thermodynamic Casimir force at a given temperature in
lattice models by performing a single Monte Carlo simulation. It is analogous to the one used by de Forcrand
and co-workers in the study of ‘t Hooft loops and the interface tension in SU�N� lattice gauge models in four
dimensions. We test the method at the example of thin films in the XY universality class. In particular we
simulate the improved two-component �4 model on the simple cubic lattice. This allows us to compare with
our previous study, where we have computed the Casimir force by numerically integrating energy densities
over the inverse temperature.
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I. INTRODUCTION

In 1978 Fisher and de Gennes �1� realized that when ther-
mal fluctuations are restricted by a container a force acts on
the walls of the container. Since this effect is similar to the
Casimir effect, where the restriction of quantum fluctuations
induces a force, it is called “thermodynamic” Casimir effect.
Since thermal fluctuations only extend to large scales in the
neighborhood of a continuous phase transition it is also
called “critical” Casimir effect. For reviews on critical phe-
nomena and the renormalization group, see, e.g., �2–5�. Re-
cently the thermodynamic Casimir effect has attracted much
attention since it could be verified for various experimental
systems and quantitative predictions could be obtained from
Monte Carlo simulations of spin models �6�. The neighbor-
hood of the critical point implies that the Casimir force is
described by a universal finite size scaling �FSS� �7,8� func-
tion. For the film geometry, finite size scaling predicts

FCasimir�L0,t� �
kBT

L0
3 ��t�L0/�0�1/�� , �1�

where kB is the Boltzmann constant, T is the temperature, t
= �T−Tc� /Tc is the reduced temperature, and L0 is the thick-
ness of the film. The amplitude �0 of the correlation length in
the high-temperature phase is defined by

� � �0t−�, �2�

where � is the correlation length of the bulk system and � is
its critical exponent. The function ��x� is the same for all
films in a given universality class, where also the boundary
universality class �9� has to be taken into account.

As a first application of the numerical method discussed
here, we study the improved two-component �4 model on
the simple cubic lattice. The phase transition of this model
belongs to the XY universality class in three dimensions.
Also the � transition of 4He shares this universality class.
The experimental study of the � transition provided highly
accurate estimates for critical exponents and amplitude ratios
of the bulk system. For a review see �10�. Also confined

systems have been studied in detail at the � transition of 4He
�11�. In particular, the thermodynamic Casimir force in thin
films of 4He has been measured �12,13�. These experiments
confirm that the thermodynamic Casimir force for films of
different thicknesses L0 can indeed be described by the same
scaling function ��x�. For all temperatures the force turns out
to be attractive. In the high-temperature phase ��x� is mono-
tonically decreasing with decreasing x. The Casimir force
vanishes for large values of x. At the critical point of the bulk
system ��0�=−0.07�0.03 �12�. In the low-temperature
phase the finite size scaling function shows a minimum at
xmin�−5.5 with �min�1.3 �13�. For x�xmin the finite size
scaling function increases with decreasing temperature. For
small values of x it seems to approach a finite negative value.

It has been a long-standing challenge for theorists to com-
pute the finite size scaling function ��x�: Krech and Dietrich
�14,15� computed it in the high-temperature phase using the
	 expansion up to O�	�. This result is indeed consistent with
the measurements on 4He films. Deep in the low-temperature
phase, the spin wave approximation should provide an exact
result. It predicts a negative nonvanishing value for ��x�.
However the experiments suggest a much larger absolute
value for ��x� in this region. Using a renormalized mean-
field approach Zandi et al. and Maciolek et al. �16,17� com-
puted ��x� for the whole temperature range. Qualitatively
they reproduced the features of the experimental result.
However the position of the minimum is almost a factor of 2
different from the experimental one. The value at the mini-
mum is wrongly estimated by a factor of about 5.

Only quite recently Monte Carlo simulations of the XY
model on the simple cubic lattice �18–20� provided results
for ��x� which essentially reproduce the experiments on 4He
films �12,13�. In �21� we have applied the method used in
�18� to study the improved two-component �4 model on the
simple cubic lattice. The study of this model should provide
more accurate results since corrections 
L0

−� with �
=0.785�20� �22� are eliminated. Essentially our result con-
firms those in �18–20�. However there is a discrepancy in the
position xmin of the minimum of ��x� that is clearly larger
than the errors that are quoted: in �18� xmin=−5.3�1� and in
�20� xmin=−5.43�2� which has to be compared with our result
xmin=−4.95�3� �21�.

In order to complement and, to some extend, verify our
result for ��x� �21� we compute the thermodynamic Casimir*martin.hasenbusch@physik.hu-berlin.de
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force in the two-component �4 model using a different
method that is analog to that in �23,24� used to compute the
string tension and ‘t Hooft loops in lattice gauge model. The
general idea is similar to that in �19,20�. In contrast to
�19,20�, provided that fbulk is known, a single simulation is
sufficient to obtain the Casimir force at a given temperature.

This paper is organized as follows. First we define the �4

model on the simple cubic lattice. Then in Sec. III we discuss
in detail the method used here to compute the thermody-
namic Casimir force. In Sec. IV we discuss our numerical
simulations. First we performed numerical simulations at the
critical point of the three-dimensional system. Next we com-
puted the free energy density for the thermodynamic limit of
the three-dimensional system at two values of the inverse
temperature � in the high and the low-temperature phase
each. Then we have measured the thermodynamic Casimir
force for L0=8.5 at various temperatures. Finally we have
simulated at xmin, which we already had computed in Ref.
�21� for the thicknesses L0=6.5, 7.5, 9.5, 12.5, and 24.5 to
complement our results for the thermodynamic Casimir force
at its minimum. Finally we summarize our results and give
our conclusion.

II. MODEL AND OBSERVABLES

We study the two-component �4 model on the simple
cubic lattice. We label the sites of the lattice by x
= �x0 ,x1 ,x2�. The components of x may assume the values
xi� �1,2 , . . . ,Li�. Throughout we simulate lattices of the size
L1=L2=L and mostly L0L. In one and two directions pe-
riodic boundary conditions are used. In order to mimic the
vanishing order parameter that is observed at the boundaries
of 4He films, free boundary conditions in zero direction are
employed. This means that the sites with x0=1 and x0=L0
have only five nearest neighbors. This type of boundary con-
ditions could be interpreted as Dirichlet boundary conditions
with 0 as value of the field at x0=0 and x0=L0+1. Note that
viewed this way, the thickness of the film is L0+1 rather than
L0. This provides a natural explanation of the result Ls
=1.02�7� obtained in �25�. The Hamiltonian of the two-
component �4 model, for a vanishing external field, is given
by

H = − � 	

x,y�

�� x · �� y + 	
x

��� x
2 + ���� x

2 − 1�2� , �3�

where the field variable �� x is a vector with two real compo-
nents. 
x ,y� denotes a pair of nearest-neighbor sites on the
lattice. The partition function is given by

Z = �
x
� d�x

�1�� d�x
�2��exp�− H� . �4�

Note that following the conventions of our previous work,
e.g., �26�, we have absorbed the inverse temperature � into
the Hamiltonian. Therefore, following �4� we actually should
call it reduced Hamiltonian. In the limit �→� the field vari-
ables are fixed to unit length; hence the XY model is recov-
ered. For �=0 we get the exactly solvable Gaussian model.
For 0���� the model undergoes a second-order phase

transition that belongs to the XY universality class. Numeri-
cally, using Monte Carlo simulations and high-temperature
series expansions, it has been shown that there is a value
���0, where leading corrections to scaling vanish. We refer
to the two-component �4 model at �=�� as the improved
two-component �4 model. Numerical estimates of �� given
in the literature are ��=2.10�6� �27�, ��=2.07�5� �26�, and
most recently ��=2.15�5� �22�. The inverse of the critical
temperature �c has been determined accurately for several
values of � using FSS �22�.

We shall perform our simulations at �=2.1 since for this
value of � comprehensive Monte Carlo studies of the three-
dimensional system in the low- and the high-temperature
phases have been performed �22,25,28,29�. At �=2.1 one
gets �c=0.509 150 3�6� �22�. Since �=2.1 is not exactly
equal to ��, there are still corrections 
L0

−�, although with a
small amplitude. In fact, following �22�, it should be by at
least a factor 20 smaller than for the standard XY model.

Energy density and reduced free energy

Note that in Eq. �3� � does not multiply the second term.
Therefore, strictly speaking, � is not the inverse of kBT. In
order to study universal quantities it is not crucial how the
transition line in the �-� plane is crossed as long as this path
is not tangent to the transition line. Therefore, following
computational convenience, we vary � at fixed �. In the
following equations it is understood that � is kept fixed.

The reduced free energy density is defined as

f��� � −
1

L0L1L2
�ln Z��� − ln Z�0�� . �5�

Note that compared with the free energy density f̃ , a factor
kBT is skipped. For convenience we have defined the reduced
free energy such that f�0�=0. For �=0 the partition function
factorizes and thus ln Z�0� / �L0L1L2� does not depend on the
system size.

We define the �internal� energy density as the derivative
of the reduced free energy density with respect to �. Further-
more, to be consistent with our previous work, e.g., �30�, we
multiply by −1

E =
1

L0L1L2

� ln Z

��
. �6�

It follows

E =
1

L0L1L2
�	


x,y�
�� x · �� y� , �7�

which can be easily determined in Monte Carlo simulations.
From Eqs. �5� and �6� it follows that the free energy density
can be computed as

f��� = f��0� − �
�0

�

d�̃E��̃� . �8�

III. NUMERICAL METHOD

From a thermodynamic point of view, the Casimir force
per unit area is given by
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FCasimir = − kBT
� fex

�L0
, �9�

where L0 is the thickness of the film and fex= f film−L0fbulk is
the reduced excess free energy per area of the film. In lattice
models the thickness L0 assumes only integer values. There-
fore we have to approximate the derivative by a finite differ-
ence FCasimir�L0 , t��−kBT�fex�L0 , t�, where

�fex�L0,t� � f�L0 + 1/2,t� − f�L0 − 1/2,t� − fbulk�t� ,

�10�

where L0+1 /2 is integer. f�L0+1 /2, t� and f�L0−1 /2, t� are
the reduced free energies per area of films of the thicknesses
L0+1 /2 and L0−1 /2, respectively, and fbulk�t� is the reduced
free energy density of the three-dimensional bulk system.
The main numerical task is to compute the difference of the
reduced free energy per area for films of the thicknesses L0
−1 /2 and L0+1 /2.

In order to compute this difference, it is useful to have the
same number of field variables for both systems. To this end,
we add L1�L2 isolated sites to the film of the thickness L0

−1 /2. Isolated means that the field �� at such a site is subject
to the potential �� 2+���� 2−1�2 but the interaction with other
sites is missing. Using our definition �Eq. �5�� and adding
isolated sites to the film do not change the free energy per
area. Let us denote the partition function of this system by

Z̄L0−1/2. Now we can express the difference of the reduced
free energies as

F�L0 + 1/2,t� − F�L0 − 1/2,t�

= ln
Z̄L0−1/2

ZL0+1/2

= ln

D���exp�− HL0+1/2�exp�− � 	

x,y���L0+1/2�

�� x�� y�
D���exp�− HL0+1/2�

= ln�exp�− � 	

x,y���L0+1/2�

�� x�� y��
L0+1/2

, �11�

where 
x ,y�� �L0+1 /2� denotes the sum over all nearest-
neighbor pairs, where at least one of the sites is an element
of the layer x0=L0+1 /2. Formally we have rewritten the
difference of free energies as an expectation value. The prob-
lem is that the observable is strongly fluctuating and there-
fore it is impossible to obtain an accurate estimate from a
Monte Carlo simulation of the film of the thickness L0
+1 /2. A well known method to overcome this problem is the
so called “multistage sampling” strategy; see, e.g., �31�. This
means that a sequence of systems is introduced that interpo-
lates between the two we are interested in. These systems are
characterized by the Hamiltonians H0 ,H1 , . . . ,HN, where we

identify H0= H̄L0−1/2 and HN=HL0+1/2. Now we can rewrite
the ratio of partition functions as

Z0

ZN
=

Z0

Z1

Z1

Z2
. . .

ZN−1

ZN
, �12�

where we can write the factors as

zi+1 �
Zi

Zi+1
= 
exp�− Hi+1 + Hi��i+1 �13�

and hence

F�L0 + 1/2,t� − F�L0 − 1/2,t� = 	
i=1

N

ln zi. �14�

If the sequence is properly chosen and N is sufficiently large,
the fluctuations of exp�−Hi+1+Hi� are small and the expec-
tation value can be accurately determined from the simula-
tion of the system i+1. Obviously there is much freedom in
the construction of the sequence of systems. A straightfor-
ward one is given by

Hi = H̄L0−1/2 +
i

N
� 	


x,y���L0+1/2�
�� x�� y . �15�

This choice is very similar to the one used in �19,20�. The
main difference is that these authors did consider as starting
system a film of thickness L0−1 /2 plus a two-dimensional
system of the size L1�L2. This means that in contrast to our
choice the intralayer couplings are switched on.

Here we use a different interpolation. It is inspired by a
method used to compute the string tension and ‘t Hooft loops
in lattice gauge theories �23,24�.

We add the isolated sites one by one to the film. In the
step i= �x1−1�L1+x2 the site x= �L0+1 /2,x1 ,x2� is added.
All sites that are added are coupled with their nearest neigh-
bors that are already in the film. This way we have con-
structed a sequence of L1�L2+1 systems. Hence, L1�L2
independent Monte Carlo simulations have to be performed
to obtain F�L0+1 /2, t�−F�L0−1 /2, t�. Following �23,24�
this can however be avoided: with increasing L1 ,L2 the sum
�Eq. �14�� is dominated by contributions where the newly
added site is far from the defect line between x1=L1 and x1
=1 as well as from the point defect between x2=L2 and x2
=1. Hence most of the contributions are essentially equal to
that for x1=L1 /2 and x2=L2 /2 as sketched in Fig. 1. In the
limit L1 ,L2→�, this should become exact. Hence only a
single simulation for x1=L1 /2 and x2=L2 /2 is required.

Usually updates are performed on the whole lattice
�“sweep”� before a measurement of the observables is per-
formed. However in the present case, the observable is local-
ized at a single site. Therefore the effort for the measurement
and the update would be highly unbalanced. To circumvent
this problem, one would like to update the fields in the
neighborhood of this site more frequently than those far off.
In order to achieve this we follow the idea presented in �32�:
we consider a sequence of subsets of the sites of the lattice.
Here, the smallest set consists of the site �L0+1 /2,L1 /2,
L2 /2� only. The next larger one consists of �L0+1 /2,
L1 /2,L2 /2� and its three neighbors �L0+1 /2,L1 /2−1,
L2 /2�, �L0+1 /2,L1 /2,L2 /2−1�, and �L0−1 /2,L1 /2,L2 /2�.
The larger ones are given by blocks of the size bl� �2bl

ANOTHER METHOD TO COMPUTE THE THERMODYNAMIC… PHYSICAL REVIEW E 80, 061120 �2009�

061120-3



+1�� �2bl+1� and L0� �2bl+1�� �2bl+1� if bl�L0. These
blocks are centered around the site �L0+1 /2,L1 /2,L2 /2�. If
bl�L0, the eight corners of these blocks are �L0+1 /2,L1 /2
−bl ,L2 /2�bl�, �L0−1 /2,L1 /2+bl ,L2 /2�bl�, and �L0
+1 /2�bl ,L1 /2−bl ,L2 /2�bl�. In our simulations we have
used bl=1,2 ,3 ,5 ,10,20,40,80, . . ., where the largest bl is
chosen such that 2bl+1�L1 ,L2.

In a certain sequence, Metropolis and over-relaxation
sweeps over these subsets are performed. We have imple-
mented these updates as discussed in appendix A in �26�.
This sequence, which we shall call one update cycle, is best
explained by the following pseudocode

cluster_update��; metrosweep�full lattice�; oversweep�full lattice�;
for�i1=0; i1�m_1; i1++�

�
metrosweep �b_1�; oversweep �b_1�;
for�i2=0; i2�m_2; i2++�

�
metrosweep �b_2�; oversweep �b_2�;
.

.

.

for�iM=0; iM�m_M; iM++�
�
metrosweep �b_M�; oversweep �b_M�;
measure��;

�
.

.

.

�
�

This means that in one cycle m1�m2� . . . �mM mea-
surements are performed. We did not accurately tune the pa-
rameters m1 ,m2 ,m3 , . . . ,mM; instead we have chosen them
such that the CPU time spent at each block size is roughly
the same. This is approximately achieved by choosing mlbl

d

=const, where d is the dimension of the system.
In the case of the single cluster updates �33� it is easy to

focus on the site �L0+1 /2,L1 /2,L2 /2�. One simply starts the
clusters at the site �L0+1 /2,L1 /2,L2 /2� instead of choosing
the starting point at random. In our numerical tests we have
not yet implemented this idea.

Measurement

The measurement consists, in its most naive implementa-
tion, of the evaluation of

A = exp�− ��� �L0+1/2,L1/2,L2/2� · �� �L0+1/2,L1/2,L2/2�� , �16�

where

�� �L0+1/2,L1/2,L2/2� = �� �L0+1/2,L1/2−1,L2/2� + �� �L0+1/2,L1/2,L2/2−1�

+ �� �L0−1/2,L1/2,L2/2�. �17�

We have reduced the variance by performing the integral
over the angle of the field �� �L0+1/2,L1/2,L2/2� exactly. This re-
sults in the improved observable

Ā =
1

�
0

2�

d� exp�− R cos ��
=

1

2�I0�R�
, �18�

where

R = ���� �L0+1/2,L1/2,L2/2����� �L0+1/2,L1/2,L2/2�� �19�

and I0�R� is a modified Bessel function. For our simulations
we have tabulated 1 / �2�I0�R�� for 0�R�3 with a step size
of 0.0001, i.e., for 30 001 values of R. During the simulation
we then evaluated 1 / �2�I0�R�� for 0�R�3 by quadratically
interpolating the results given in the table. If R�3 we have
evaluated the integral in Eq. �18� numerically. A sufficient
precision can already be achieved with about 30 nodes.

The expectation value

z = 
A� = 
Ā� �20�

is estimated by averaging Ā over all measurements that we
performed after thermalization. Here we have dropped the
subscript i= �L1 /2−1�L2+L2 /2 of Eq. �13� since only this
value of i will be considered in the following. During the
simulation we have averaged already all measurements in a
given update cycle. These averages were written to a file.
The statistical error was then computed taking into account
the integrated autocorrelation time of these cycle averages.

���
���
���

FIG. 1. We sketch the layer x0=L0+1 /2 of our system. In the
sketch L1=L2=6. The sites are given by circles. The filled ones are
coupled to the system, while the empty ones are isolated. We com-
pute the free energy difference between the system where the
shaded circle is isolated and the system where it is coupled to the
film. Note that due to the periodic boundary conditions in one and
two directions there is also a defect line between x1=1 and x1=L1

and a point defect at L1 /2 between x2=1 and x2=L2. For a discus-
sion see the text.
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IV. NUMERICAL RESULTS

First we have simulated at the critical temperature of the
bulk system. Next we have determined the reduced free en-
ergy of the bulk system at �=0.49 and �=0.5 in the high-
temperature phase and at �=0.533 and �=0.56 in the low-
temperature phase. For L0 ,L1 ,L2�� the reduced free energy
of the bulk system is given by fbulk=ln z. Our results are
consistent with those obtained by integrating the energy den-
sities computed in �30�. Then we have studied films of the
thickness L0=8.5 at four temperatures in the low-temperature
phase of the bulk system. Also here we find that the results
are consistent with those in �30�. Finally we have simulated
the thicknesses L0=6.5, 7.5, 9.5, 12.5, and 24.5 at xmin. These
simulations complement our results in �30� at xmin.

As random number generator we have used the SIMD-
oriented fast Mersenne twister algorithm �34�.

A. Simulations at the critical point

First we performed simulations at the inverse critical tem-
perature �c=0.509 150 3�6� of the three-dimensional system
using lattices of the thicknesses L0=8.5, 12.5, 16.5, 24.5,
32.5, and 64.5. In all cases we have chosen L1=L2=12.5
� �L0−1 /2�. Since the correlation length of the film is
�2nd,film /L0,ef f �0.416 �30� this should be sufficient to keep
deviations from the two-dimensional thermodynamic limit
smaller than our statistical errors. As a check we have simu-
lated for L0=8.5, in addition L1=L2=20, 30, and 50. We find
z=0.849 505 17�36�, 0.849 513 62�36�, and
0.849 515 72�37� for these lattice sizes, respectively. Indeed,
starting from L1=L2=50 our results are consistent within er-
ror bars. Our results for L1=L2=12.5� �L0−1 /2� are sum-
marized in Table I. In these simulations we have used block
sizes up to b1=10, 20, 20, 40, 40, and 80 for L0=8.5, 12.5,
16.5, 24.5, 32.5, and 64.5, respectively. For all these thick-
nesses and for all block sizes we have used ml=6. The num-
bers of update cycles are 2.1�107, 7.7�106, 7.7�106, 2
�106, 1.3�106, and 2.8�105 for L0=8.5, 12.5, 16.5, 24.5,
32.5, and 64.5, respectively. In total these simulations took
about 16 month of CPU time on a single core of a quad-core
Opteron�tm� 2378 CPU �2.4 GHz�.

The reduced excess free energy behaves as

fex�L0,t� = L0,ef f
−2 h�t�L0,ef f/�0�1/�� + fs�t� , �21�

where L0,ef f =L0+Ls with Ls=1.02�7� �25� takes into account
corrections due to the Dirichlet boundary conditions and fs�t�

is the surface contribution to the free energy. For a discus-
sion and references see �35�. Taking the derivative with re-
spect to L0 at t=0 we arrive at

− � � fex�L0,t�
�L0

�
t=0

= 2h�0�L0,ef f
−3 = ��0�L0,ef f

−3 , �22�

where � is the finite size scaling function of the thermody-
namic Casimir force.

It follows

ln z�L0,�c� = fns��c� − ��0�L0,ef f
−3 . �23�

Note that in the thermodynamic limit the singular part of the
free energy density vanishes at the critical point; hence
fbulk��c�= fns��c�. The results of our fits are given in Table II.

In order to estimate the effect of the error of Ls on our
results we have repeated these fits using Ls=0.95. For ex-
ample, for L0,min=12.5 we get fns=−0.163 159 30�10� and
��0�=−0.0593�5�. We have also checked the effect of the
error of �c. To this end we have computed
�f�L0 ,0.509 150 9� by using the data for the energy given in
table 1 in �35�. We find that the effect on fns and ��0� is small
and can be ignored here. Based on the result obtained for
L0,min=12.5 we take as final results

fns = − 0.163 159 3�1�, ��0� = − 0.060�2� , �24�

where the error bar covers both the statistical error as well as
the error due to the uncertainty of Ls.

This can be compared with the result for 4He films ��0�
=−0.07�0.03 �12�, the 	 expansion up to O�	�: ��0�=
−0.044 taken from table I in �14� and the estimate ��0�=
−0.062�5� obtained from Monte Carlo simulations of the
standard XY model �18�. Mon and Nightingale �36� quoted
h�0��−0.03 �in their notation � f� as final result. The largest
discrepancy is seen for the 	 expansion. One should note that
in �18,21� it has been observed that in the high-temperature
phase for x�1 the numerical result for � matches nicely with
the 	 expansion �14�.

B. Free energy density of the bulk system

Here we compute the free energy density of the bulk sys-
tem for two values of � in the high-temperature phase and
two values of � in the low-temperature phase. These results
are compared with ones obtained by integrating the energy
density starting from �c=0.509 150 3 using the start value
f��c�=−0.163 159 3�1� obtained above.

For sufficiently large L0, L1, and L2 the quantity ln z
should be a good approximation of the bulk free energy den-

TABLE I. Results for z at �c=0.509 150 3 �22� for lattices of
the size L1=L2=12.5� �L0−1 /2�.

L0 z

8.5 0.84951552�24�
12.5 0.84947657�16�
16.5 0.84946525�23�
24.5 0.84945897�13�
32.5 0.84945717�16�
64.5 0.84945602�14�

TABLE II. Results for fits with ansatz �23�, where we have used
Ls=1.02 as input. All data for L0�L0,min are fitted. For a discussion
see the text.

L0,min fns ��0� �2 /d.o.f.

8.5 −0.16315935�9� −0.0606�3� 0.20

12.5 −0.16315932�10� −0.0603�6� 0.14

16.5 −0.16315930�12� −0.0597�17� 0.15
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sity. In particular in the high-temperature phase, this should
be the case for L0 ,L1 ,L2��3D. Here we performed simula-
tions at �=0.49 where �2nd,3D=3.723 70�19� and �=0.5
where �2nd,3D=6.1498�5� �see table 5 in �29��.

At �=0.49 we have simulated L0=49.5, L1=L2=50 and
L0=99.5, L1=L2=100. For L0=49.5, L1=L2=50 we have
used block sizes up to b1=20 and ml=6. From 5.2�106

cycles we get f�0.49�=−0.147 120 79�18�. For L0=99.5, L1
=L2=100 we have used block sizes up to b1=40 and ml=6.
From 9.5�105 cycles we get f�0.49�=−0.147 120 95�17�.
As expected, these results are indeed consistent within error
bars and hence a good approximation of the thermodynamic
limit.

Based on the experience gained at �=0.49 we have simu-
lated at �=0.5 only the lattice size L0=99.5, L1=L2=100.
We have used block sizes up to b1=20 and ml=6. From 6
�106 cycles we get f�0.5�=−0.155 199 42�24�.

In the low-temperature phase we find from simulations of
a 199.5�5002 lattice f�0.533�=−0.189 318 67�66� and
f�0.56�=−0.226 936 25�73�. We have used blocks up to the
size b1=80 and ml=6 for all block sizes. We performed
24 700 and 21 700 cycles for �=0.533 and �=0.56, respec-
tively. Both of these simulations took about 8 weeks of CPU
time on a single core of a quad-core Opteron�tm� 2378 CPU
�2.4 GHz�.

Now we can check whether these results for the free en-
ergy density are consistent with those obtained from integrat-
ing the energy density �30� using Eq. �8�.

In �30� we have computed the energy density of the three-
dimensional bulk system in the range of inverse temperatures
0.49���0.58. We have fitted these data in the range 0.49
���0.529 with the ansatz

E��� = Ens + Cns�� − �c� + a��� − �c�1−� + dns�� − �c�2

+ b��� − �c�2−�, �25�

where Ens, Cns, �c=0.509 150 3�6�, and �=−0.0151�3� �22�
are input and a�, dns, and b� are the five free parameters of
the fit. For ��0.529 we have integrated this ansatz using the
results for the fit parameter obtained in �30�. In all cases we
have taken �0=�c=0.509 150 3 as starting point of the inte-
gration, where we have used the estimate of f��c� obtained
above. Our results are summarized in Table III. For �
�0.529 we performed a numerical integration of the energy
density using the trapezoidal rule, starting from �0=0.52.

The estimate for f�0.52� is taken from Table III. We have
checked that our result virtually does not depend on the
choice of �0, where we switch from the integration of ansatz
�25� to the numerical integration of the energy density. Also
the results for ��0.529 are given in Table III. The error
quoted is dominated by the error for the free energy at �c.

In Table III we also give our results for the free energy
density of the bulk system at �=0.49, 0.50, 0.533, and 0.56
as computed by the method discussed here. We find that the
results are consistent within error bars. This confirms that we
can indeed compute the free energy density of the bulk sys-
tem with six to seven accurate digits.

C. Films of the thickness L0=8.5

We have simulated at �=0.52,0.533,0.54,0.56 in the
low-temperature phase of the three-dimensional system. We
have taken lattices of the sizes L1=L2=50, 100, 250, 500,
and 1000 to control corrections to the two-dimensional ther-
modynamic limit of the thin film. The simulations for L1
=L2=1000 took about 18 days of CPU time each. In Table
IV we give our results for −�fex, where we have used the

TABLE III. Numerical results for the free energy density of the
bulk system. These were obtained by integration of the energy den-
sity. As starting point of the integration we have taken the critical
point �c and the value f��c� obtained in Sec. IV C. In addition in
the third column we give estimates of the free energy density ob-
tained directly with the method discussed in the present work.

� f integral f direct

0.49 −0.1471210�1� −0.1471210�2�
0.50 −0.1551994�1� −0.1551994�2�
0.51463 −0.1684460�1�
0.52 −0.1740847�1�
0.52348 −0.1779533�1�
0.5301 −0.1857405�1�
0.533 −0.1893183�1� −0.1893187�7�
0.53814 −0.1958961�2�
0.54 −0.1983478�2�
0.54432 −0.2041851�2�
0.56 −0.2269362�2� −0.2269363�7�

TABLE IV. Numerical results for −�fex of films of the thickness L0=8.5. In the last row we give the
results in �21� for comparison.

L1=L2 /� 0.52 0.533 0.54 0.56

50 −0.0007423�14� −0.0014878�23� −0.0010417�27� −0.0003621�23�
100 −0.0007432�8� −0.0015797�13� −0.0011867�18� −0.0003870�13�
250 −0.0007436�5� −0.0015845�8� −0.0012564�14� −0.0003934�8�
500 −0.0007439�3� −0.0015863�5� −0.0012679�10� −0.0003940�5�
1000 −0.0007433�3� −0.0015846�5� −0.0012666�11� −0.0003945�6�

Ref. �21� −0.0007392�18� −0.0015795�24� −0.0012600�26� −0.0003874�28�
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estimates of fbulk computed in Sec. IV B. At �=0.52 the
results for all choices of L1=L2 are consistent within error
bars. At �=0.533 a clear deviation of the results from those
obtained for larger lattices can be observed up to L1=L2
=100. The result for L1=L2=500 deviates by a bit more than
two standard deviations from that for L1=L2=1000, while
the results for L1=L2=250 and L1=L2=1000 are consistent
within error bars. For �=0.54 and �=0.56 the results ob-
tained for L1=L2=250, 500, and 1000 are consistent within
error bars. We conclude that in all cases for L1=L2=1000 the
deviation from the thermodynamic limit is smaller than the
error bar.

For comparison we give in the last row results �21� which
were obtained by numerical integration of Monte Carlo data
for �Eex. We see that the results in �21� are by about 4
�10−6 larger than our present ones. This deviation is about
twice the statistical error. In �21� we have started the integra-
tion at �=0.49 for L0=8.5, setting �fex�0.49�=0. From the 	
expansion �14� we get ��x��−3.9�10−3 for x
= t�L0,ef f /�0�1/� corresponding to �=0.49 and L0=8.5. Hence
−�fex=�L0,ef f

−3 �−4.1�10−6 which fully explains the differ-
ence observed in Table IV.

D. Minimum of the Casimir force

In �21� we have determined the position of the minimum
of � for a large number of thicknesses of the film. To this end
we have determined the zero of

�Eex�L0,�� = E�L0 + 1/2,�� − E�L0 − 1/2,�� − Ebulk��� ,

�26�

where E�L0+1 /2,�� is the energy per area of a film of the
thickness L0+1 /2 and Ebulk��� is the energy density of the
three-dimensional bulk system. We had simulated at a few
values of � in the neighborhood of �min. To get a preliminary
estimate of �min we used the information gained already
from the simulations for L0=8.5, 16.5, and 32.5, where we
have simulated a large range of � values and the ansatz
�min�L0�−�c
L0,ef f

−1/� . These results are given in Table V,
which we have copied from table 2 in �21�. In the present

work, we have added the values of �min for L0=6.5, 7.5, 9.5,
12.5, and 24.5 that were missing in �21�. To this end, we
have simulated lattices of the sizes L1=L2=500 for L0=6.5
and 7.5, L1=L2=1000 for L0=9.5 and L0=12.5, and L1=L2
=2000 for L0=24.5. From these simulation we get ln z, while
fbulk is taken from Table III. Our results for −�fex are given
in Table V.

Let us briefly discuss the simulation of the L0=24.5 film:
the simulations took about 2 months of CPU time on a single
core of a quad-core Opteron�tm� 2378 CPU �2.4 GHz�. We
performed 33 000 update cycles. We have used block sizes
up to b1=160 and ml=6 for all block sizes.

First we have fitted the results for −�fex,min given in the
third column of Table V with the ansatz

− �fex,min = �min�L0 + Ls�−3, �27�

where �min and Ls are the free parameters of the fit. Our
results are summarized in Table VI.

The �2 /degree of freedom �d.o.f.� is smaller than 1 start-
ing from L0,min=8.5, where all data with L0�L0,min are in-
cluded into the fit. We find Ls�0.89 which is a bit smaller
than our previous result Ls=1.02�7� �25�. Note that already
in �21� we observed that Ls=0.95 apparently leads to a better
matching of the data than Ls=1.02.

To check the possible effect of subleading corrections we
have fitted our data also with the ansatz

− �fex,min = �min�1 + cL0
−2��L0 + Ls�−3. �28�

Note that there are a number of different corrections with a

correction exponent close to 2, e.g., 
L0
−�� with ��=1.8�2�

�37� or the restoration of the symmetries that are broken by
the lattice. Our results are summarized in Table VII.

Now the value Ls�0.95 is fully consistent with our pre-
vious result �25�. As final result we quote �min=−1.31�2�,
where we have estimated the systematic error by the differ-
ence of the two fits �Eqs. �27� and �28��. This result fully
confirms our previous estimate �min=−1.31�3� �21�.

TABLE V. The position �min of the minimum of the Casimir
force and its value −�fex,min as a function of the thickness L0. In the
present work we have completed the table by adding �fex,min for
L0=6.5, 7.5, 9.5, 12.5, and 24.5. These results are marked by an
asterisk.

L0 �min −�fex,min

6.5 0.54432�2� −0.0032744�13��

7.5 0.53814�2� −0.0022305�11��

8.5 0.53354�2� −0.001582�3�
9.5 0.53010�2� −0.0011714�8��

12.5 0.52348�2� −0.0005468�6��

16.5 0.51886�2� −0.0002494�11�
24.5 0.51463�2� −0.0000803�3��

32.5 0.51279�2� −0.0000348�5�

TABLE VI. We have fitted the minimum of the thermodynamic
Casimir force with ansatz �27�.

L0,min �min Ls �2 /d.o.f.

6.5 −1.299�2� 0.849�5� 2.64

7.5 −1.305�3� 0.864�7� 1.64

8.5 −1.313�5� 0.889�13� 0.89

9.5 −1.310�5� 0.880�15� 0.34

12.5 −1.312�9� 0.888�33� 0.50

TABLE VII. We have fitted the minimum of the Casimir force
with ansatz �28�.

L0,min �min Ls c �2 /d.o.f.

6.5 −1.322�8� 0.953�3� 1.08�35� 1.13

7.5 −1.320�10� 0.945�5� 0.97�61� 1.40
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V. SUMMARY AND CONCLUSION

We have discussed a method to compute the thermody-
namic Casimir force in lattice models which is closely re-
lated with the one used by de Forcrand and Noth �23� and de
Forcrand et al. �24� in the study of ‘t Hooft loops and the
interface tension in SU�N� lattice gauge models in four di-
mensions.

We have tested the method at the example of thin films of
the improved two-component �4 model on the simple cubic
lattice. This model shares the XY universality class with the
� transition of 4He. Therefore the Casimir force that is mea-
sured for thin films of 4He �12,13� should be governed by the
same universal finite size scaling function � as that computed
from lattice models in the XY universality class.

Only quite recently � has been obtained from Monte
Carlo simulations of the standard XY model on the simple
cubic lattice �18–20�. This result is of particular interest
since other theoretical methods do not provide us with accu-
rate results for � for the whole range of the scaling variable
x= t�L0 /�0�1/�. Overall one finds a reasonable match between
the experimental and Monte Carlo results. In �21� we have
redone the Monte Carlo simulations using the improved two-
component �4 model on the lattice. It turns out that there is
a discrepancy in the position xmin of the minimum of ��x�:
xmin=−5.3�1� �18� and xmin=−5.43�2� �20� have to be com-
pared with our result xmin=−4.95�3� �21�.

The purpose of the present work is twofold: first we like
to figure out the performance of the method and second we
like to check and to complement the results in �21�. In par-
ticular, see below.

We have accurately computed the finite size scaling func-
tion of the thermodynamic Casimir force ��0� at the critical
point of the three-dimensional bulk system. Our result is
consistent with the experimental result for 4He films �12� and
previous Monte Carlo simulations �18,36�. On the other hand
there is a clear discrepancy with the 	 expansion �14�.

We have demonstrated that the method even allows us to
compute the free energy density of the bulk system. However
it seems to be more efficient in this case to integrate the
energy density �Eq. �8��.

We have not worked out theoretically how fast ln z con-
verges to limL1,L2→��f�L0+1 /2, t�− f�L0−1 /2, t��. A natural
guess is that the convergence is exponentially fast in L1 ,L2 in
the high-temperature phase of the film, while in the low-
temperature phase it follows a power law. For the thickness
L0=8.5 we have simulated at four values of � for a large
range of L1=L2 up to L1=L2=1000. The results show that
the convergence with L1 ,L2→� has no problem in practice.
Our final results for −�fex at these four values of � are
consistent but more accurate than those obtained in �21�.

Finally we have computed �min for several thicknesses,
where we have taken the values of xmin from �21�. This al-
lowed us to improve the estimate �min=1.31�3� �21� to �min
=1.31�2�. This part of the study nicely shows that the virtues
of the two method are complementary.

We have not worked out theoretically how the numerical
effort increases for a given precision with increasing thick-
ness of the film. We also have not optimized the parameters
of the algorithm. However it is quite clear from the simula-
tions presented here that the method, using our ad hoc choice
of the parameters, is superior to the previous proposal
�19,20� where only lattices up to the size 40�1202 had been
simulated.

Here we have tested the method at the example of the XY
universality class. The application to other universality
classes, such as the Ising or Heisenberg universality class, is
straightforward. On the other hand, the method seems to be
restricted to films with Dirichlet boundary conditions.
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